Jump to main content
Jump to site search

Issue 12, 2015
Previous Article Next Article

Atomic-scale origin of piezoelectricity in wurtzite ZnO

Author affiliations


ZnO has been extensively studied by virtue of its remarkably high piezoelectric responses, especially in nanowire forms. Currently, the high piezoelectricity of wurtzite ZnO is understood in terms of the covalent-bonding interaction between Zn 3d and O 2p orbitals. However, the Zn 3d orbitals are not capable of forming hybridized orbitals with the O 2pz orbitals since the Zn ion is characterized by fully filled non-interacting 3d orbitals. To resolve this puzzling problem, we have investigated the atomic-scale origin of piezoelectricity by exploiting density-functional theory calculations. On the basis of the computed orbital-resolved density of states and the band structure over the ΓM first Brillouin zone, we propose an intriguing bonding mechanism that accounts for the observed high piezoelectricity – intra-atomic 3dz2–4pz orbital self-mixing of Zn, followed by asymmetric hybridization between the Zn 3dz2–4pz self-mixed orbital and the O 2pz orbital along the polar c-axis of the wurtzite ZnO.

Graphical abstract: Atomic-scale origin of piezoelectricity in wurtzite ZnO

Back to tab navigation

Supplementary files

Article information

29 Dec 2014
11 Feb 2015
First published
12 Feb 2015

Phys. Chem. Chem. Phys., 2015,17, 7857-7863
Article type

Atomic-scale origin of piezoelectricity in wurtzite ZnO

J. Lee, W. Lee, S. Lee, S. M. Kim, S. Kim and H. M. Jang, Phys. Chem. Chem. Phys., 2015, 17, 7857
DOI: 10.1039/C4CP06094F

Social activity

Search articles by author