Issue 8, 2015

The direct and precursor mediated dissociation rates of H2 on a Ni(111) surface

Abstract

The dissociation and recombination rates of physisorbed H2, and the direct and steady state dissociation (i.e., the precursor mediated dissociation) rates of gas phase H2 on Ni(111), as well as the corresponding kinetic isotope effects, are calculated using the quantum instanton method, together with path integral Monte Carlo and adaptive umbrella sampling techniques. All these rates except the recombination one first decrease and then increase with the increasing temperature, and their minimum values appear at about 250, 300 and 250 K, respectively. These non-monotonic behaviors reveal that the quantum effect of H2 should be very remarkable at low temperatures. The steady state rates are smaller than the direct rates at low temperatures, however, they become larger than the direct ones at high temperatures, these two kinds of rates become equal at about 400 and 300 K on the rigid and quantum lattices, respectively. The quantum motion of the lattice can enhance the direct and steady state rates, and it increases the steady state rate much more than the direct one, for instance, the direct and steady state rates on the quantum lattice are 1.30 and 2.08 times larger than that on the rigid one at 300 K. The calculated kinetic isotope effects are much larger than 1, which reveals that H2 always has a larger rate than that of D2, and the direct process predicts much larger kinetic isotope effects than the steady state process at low temperatures. In addition, the kinetic isotope effects are not affected by the lattice motion.

Graphical abstract: The direct and precursor mediated dissociation rates of H2 on a Ni(111) surface

Article information

Article type
Paper
Submitted
03 Dec 2014
Accepted
22 Jan 2015
First published
22 Jan 2015

Phys. Chem. Chem. Phys., 2015,17, 5901-5912

The direct and precursor mediated dissociation rates of H2 on a Ni(111) surface

W. Wang and Y. Zhao, Phys. Chem. Chem. Phys., 2015, 17, 5901 DOI: 10.1039/C4CP05624H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements