Issue 2, 2015

Water and polymer dynamics in a model polysaccharide hydrogel: the role of hydrophobic/hydrophilic balance

Abstract

The molecular dynamics of water and a polymer matrix is here explored in a paradigmatic model of a polysaccharide hydrogel, by the combined use of UV Raman scattering and infrared measurements. The case example of cyclodextrin nanosponges (CDNS)/hydrogel is chosen since the simultaneous presence in the structure of the polymer matrix of both hydrophilic and hydrophobic sites mimics the complexity of polysaccharide hydrogels. In this way, the contributions provided by the balance between the hydrophilicity/hydrophobicity and the grade of entanglement of the polymer hydrogel to lead to the formation of the gel phase are separately accounted and evaluated. As main results, we found that the hydrophobic CH groups inserted on the aromatic ring of CDNS experience a more pronounced dynamic perturbation with respect to the carbonyl groups due to the collision between the solvent and vibrating atoms of the polymer. The overall results provide a detailed molecular picture of the swelling phenomena occurring when a chemically cross-linked polymer contacts with water or biological fluids and exploits the potentiality of UV Raman spectroscopy to retrieve dynamic information besides their structural counterpart obtained by the classical analysis of the basic features of vibrational spectra.

Graphical abstract: Water and polymer dynamics in a model polysaccharide hydrogel: the role of hydrophobic/hydrophilic balance

Article information

Article type
Paper
Submitted
09 Sep 2014
Accepted
10 Nov 2014
First published
11 Nov 2014

Phys. Chem. Chem. Phys., 2015,17, 963-971

Author version available

Water and polymer dynamics in a model polysaccharide hydrogel: the role of hydrophobic/hydrophilic balance

B. Rossi, V. Venuti, F. D'Amico, A. Gessini, F. Castiglione, A. Mele, C. Punta, L. Melone, V. Crupi, D. Majolino, F. Trotta and C. Masciovecchio, Phys. Chem. Chem. Phys., 2015, 17, 963 DOI: 10.1039/C4CP04045G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements