Issue 43, 2014

High-efficiency inverted polymer solar cells controlled by the thickness of polyethylenimine ethoxylated (PEIE) interfacial layers

Abstract

In this work, we investigate the effect of the thickness of the polyethylenimine ethoxylated (PEIE) interface layer on the performance of two types of polymer solar cells based on inverted poly(3-hexylthiophene) (P3HT):phenyl C61-butryric acid methyl ester (PCBM) and thieno[3,4-b]thiophene/benzodithiophene (PTB7):[6,6]-phenyl C71-butyric acid methyl ester (PC71BM). Maximum power conversion efficiencies of 4.18% and 7.40% were achieved at a 5.02 nm thick PEIE interface layer, for the above-mentioned solar cell types, respectively. The optimized PEIE layer provides a strong enough dipole for the best charge collection while maintaining charge tunneling ability. Optical transmittance and atomic force microscopy measurements indicate that all PEIE films have the same high transmittance and smooth surface morphology, ruling out the influence of the PEIE layer on these two parameters. The measured external quantum efficiencies for the devices with thick PEIE layers are quite similar to those of the optimized devices, indicating the poor charge collection ability of thick PEIE layers. The relatively low performance of devices with a PEIE layer of thickness less than 5 nm is the result of a weak dipole and partial coverage of the PEIE layer on ITO.

Graphical abstract: High-efficiency inverted polymer solar cells controlled by the thickness of polyethylenimine ethoxylated (PEIE) interfacial layers

Article information

Article type
Paper
Submitted
05 Aug 2014
Accepted
16 Sep 2014
First published
18 Sep 2014

Phys. Chem. Chem. Phys., 2014,16, 23792-23799

High-efficiency inverted polymer solar cells controlled by the thickness of polyethylenimine ethoxylated (PEIE) interfacial layers

P. Li, G. Wang, L. Cai, B. Ding, D. Zhou, Y. Hu, Y. Zhang, J. Xiang, K. Wan, L. Chen, K. Alameh and Q. Song, Phys. Chem. Chem. Phys., 2014, 16, 23792 DOI: 10.1039/C4CP03484H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements