Issue 35, 2014

Regulation of photoluminescence properties of graphene quantum dots via hydrothermal treatment

Abstract

Graphene quantum dots (GQDs) have fascinating photoluminescence (PL) properties with promising applications in bioimaging, fluorescent sensing and the photoelectrics field. In this work, PL properties of GQDs obtained from different carbonaceous precursors including carbon fibers, graphite powder, graphene oxide (GO) and reduced graphene oxide (RGO) were regulated via a simple hydrothermal reduction. Upon hydrothermal treatment, the fluorescent peaks of the original GQDs were blue-shifted to 440 nm and their PL intensities were enhanced by about 2 times. Furthermore, the full widths at half maxima (FWHM) of the fluorescent peaks were narrowed. The improved PL properties of the GQDs were mainly attributed to the change of oxygenated groups on the GQDs surface, with most hydroxyl and epoxy groups of the GQDs removed, while carboxyl groups were largely intact. Different from chemical modification methods, the improvement of PL properties of GQDs by a hydrothermal method revealed the effect of different oxygenated groups on the GQDs surface on their PL properties, helping to clarify the PL mechanism of GQDs.

Graphical abstract: Regulation of photoluminescence properties of graphene quantum dots via hydrothermal treatment

Supplementary files

Article information

Article type
Paper
Submitted
16 Jun 2014
Accepted
24 Jul 2014
First published
25 Jul 2014

Phys. Chem. Chem. Phys., 2014,16, 19011-19016

Regulation of photoluminescence properties of graphene quantum dots via hydrothermal treatment

P. Luo, Y. Qiu, X. Guan and L. Jiang, Phys. Chem. Chem. Phys., 2014, 16, 19011 DOI: 10.1039/C4CP02652G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements