Jump to main content
Jump to site search

Issue 18, 2014
Previous Article Next Article

Liquid state dynamic nuclear polarization of ethanol at 3.4 T (95 GHz)

Author affiliations

Abstract

Dynamic Nuclear Polarization (DNP) in the liquid state has become the focus of attention to improve the NMR sensitivity of mass limited samples. The Overhauser model predicts a fast reduction in DNP enhancement at high magnetic fields where the electron Larmor frequency exceeds the typical inverse correlation time of the magnetic interaction between an unpaired electron spin of a radical and proton spins of the solvent molecules. The Overhauser hard sphere model is able to predict quantitatively the DNP enhancement for water TEMPOL solutions. The increase in temperature due to dielectric heating of the sample acts to reduce the correlation times and allows a substantial Overhauser DNP. In this paper we extend the work done on water towards other small molecules, such as ethanol. Experimentally we observe a similar enhancement for all three proton groups in the ethanol molecule. The classical interpretation of the low field Overhauser experiments on ethanol invokes a very fast anisotropic rotation of the hydrogen bonded TEMPOL–ethanol complex to explain the fast relaxation of the OH proton. Here we will discuss W-band relaxation and DNP enhancement within this classical model. Although the description can be made quantitative, the invoked parameters do not seem to be realistic. We will propose an alternative model based on the dynamic interaction both in free collision and due to modulation of the hydrogen bond length of the complex.

Graphical abstract: Liquid state dynamic nuclear polarization of ethanol at 3.4 T (95 GHz)

Back to tab navigation

Article information


Submitted
12 Dec 2013
Accepted
26 Feb 2014
First published
26 Feb 2014

Phys. Chem. Chem. Phys., 2014,16, 8493-8502
Article type
Paper

Liquid state dynamic nuclear polarization of ethanol at 3.4 T (95 GHz)

G. H. A. van der Heijden, A. P. M. Kentgens and P. J. M. van Bentum, Phys. Chem. Chem. Phys., 2014, 16, 8493 DOI: 10.1039/C3CP55254C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements