Issue 12, 2014

Adsorption of PNIPAmx-PEO20-PPO70-PEO20-PNIPAmx pentablock terpolymer on gold surfaces: effects of concentration, temperature, block length, and surface properties

Abstract

The effects of concentration, relative block length and environmental temperature as well as the surface chemical and wetting properties of solid substrates on the adsorption behaviors and mechanisms of a series of pentablock terpolymer poly(N-isopropylacrylamide)x-poly(ethylene oxide)20-poly(propylene oxide)70-poly(ethylene oxide)20-poly(N-isopropylacrylamide)x (PNIPAmx-PEO20-PPO70-PEO20-PNIPAmx or PNIPAmx-P123-PNIPAmx) with x of 10, 63 and 97 on gold were studied by using a quartz crystal microbalance (QCM) technique. It was found that increasing the solution concentration did not alter the adsorption mechanism of thickness growth mode but increase the adsorption amount of PNIPAm97-P123-PNIPAm97 on a bare gold substrate at 20 °C. Increasing the length x of PNIPAm block decreased the adsorption rate constant and shifted the adsorption mechanism from the densification adsorption process for PNIPAm10-P123-PNIPAm10 to the thickness growth mode for PNIPAm63-P123-PNIPAm63 and PNIPAm97-P123-PNIPAm97 on bare (unmodified) gold substrate at 20 °C. The adsorption mechanisms of PNIPAm97-P123-PNIPAm97 at 20 °C on the hydrophobic and hydrophilic gold surfaces were the thickness growth mode and densification adsorption process, respectively. A complex adsorption behavior with large adsorption amounts was observed at the lower critical solution temperature (LCST) of PNIPAm block, i.e. 34.7 °C, for the adsorption of PNIPAm97-P123-PNIPAm97 not only on hydrophobic gold substrates but also on hydrophilic gold substrates. The adsorption mechanism of PNIPAm97-P123-PNIPAm97 micelles at 45 °C was the densification adsorption process regardless of the surface wetting and chemical properties of gold substrate. Overall, the adsorption behavior and mechanism of PNIPAmx-P123-PNIPAmx pentablock terpolymers were mainly determined by the interactions of the pentablock terpolymers with different chain conformations in dilute aqueous solutions at various temperatures and the gold substrates with surface wetting and chemical properties.

Graphical abstract: Adsorption of PNIPAmx-PEO20-PPO70-PEO20-PNIPAmx pentablock terpolymer on gold surfaces: effects of concentration, temperature, block length, and surface properties

Article information

Article type
Paper
Submitted
27 Oct 2013
Accepted
20 Dec 2013
First published
20 Dec 2013

Phys. Chem. Chem. Phys., 2014,16, 5536-5544

Adsorption of PNIPAmx-PEO20-PPO70-PEO20-PNIPAmx pentablock terpolymer on gold surfaces: effects of concentration, temperature, block length, and surface properties

T. Chen, Y. Lu, T. Chen, X. Zhang and B. Du, Phys. Chem. Chem. Phys., 2014, 16, 5536 DOI: 10.1039/C3CP54535K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements