Issue 8, 2014

Weak hydrogen bonding motifs of ethylamino neurotransmitter radical cations in a hydrophobic environment: infrared spectra of tryptamine+–(N2)n clusters (n ≤ 6)

Abstract

Size-selected clusters of the tryptamine cation with N2 ligands, TRA+–(N2)n with n = 1–6, are investigated by infrared photodissociation (IRPD) spectroscopy in the hydride stretch range and quantum chemical calculations at the ωB97X-D/cc-pVTZ level to characterize the microsolvation of this prototypical aromatic ethylamino neurotransmitter radical cation in a nonpolar solvent. Two types of structural isomers exhibiting different interaction motifs are identified for the TRA+–N2 dimer, namely the TRA+–N2(H) global minimum, in which N2 forms a linear hydrogen bond (H-bond) to the indolic NH group, and the less stable TRA+–N2(π) local minima, in which N2 binds to the aromatic π electron system of the indolic pyrrole ring. The IRPD spectrum of TRA+–(N2)2 is consistent with contributions from two structural H-bound isomers with similar calculated stabilization energies. The first isomer, denoted as TRA+–(N2)2(2H), exhibits an asymmetric bifurcated planar H-bonding motif, in which both N2 ligands are attached to the indolic NH group in the aromatic plane via H-bonding and charge–quadrupole interactions. The second isomer, denoted as TRA+–(N2)2(H/π), has a single and nearly linear H-bond of the first N2 ligand to the indolic NH group, whereas the second ligand is π-bonded to the pyrrole ring. The natural bond orbital analysis of TRA+–(N2)2 reveals that the total stability of these types of clusters is not only controlled by the local H-bond strengths between the indolic NH group and the N2 ligands but also by a subtle balance between various contributing intermolecular interactions, including local H-bonds, charge–quadrupole and induction interactions, dispersion, and exchange repulsion. The systematic spectral shifts as a function of cluster size suggest that the larger TRA+–(N2)n clusters with n = 3–6 are composed of the strongly bound TRA+–(N2)2(2H) core ion to which further N2 ligands are weakly attached to either the π electron system or the indolic NH proton by stacking and charge–quadrupole forces.

Graphical abstract: Weak hydrogen bonding motifs of ethylamino neurotransmitter radical cations in a hydrophobic environment: infrared spectra of tryptamine+–(N2)n clusters (n ≤ 6)

Article information

Article type
Paper
Submitted
30 Sep 2013
Accepted
09 Dec 2013
First published
16 Jan 2014

Phys. Chem. Chem. Phys., 2014,16, 3798-3806

Weak hydrogen bonding motifs of ethylamino neurotransmitter radical cations in a hydrophobic environment: infrared spectra of tryptamine+–(N2)n clusters (n ≤ 6)

K. Sakota, M. Schütz, M. Schmies, R. Moritz, A. Bouchet, T. Ikeda, Y. Kouno, H. Sekiya and O. Dopfer, Phys. Chem. Chem. Phys., 2014, 16, 3798 DOI: 10.1039/C3CP54127D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements