Jump to main content
Jump to site search

Issue 16, 2013
Previous Article Next Article

The role of the hydrogen bond in dense nanoparticle–gas suspensions

Author affiliations

Abstract

The effect of surface characteristics on the interaction between nanoparticles and their agglomeration in dense gas suspensions is still not fully understood. It is known that when the surface is covered with hydroxyl groups, the interaction between nanoparticles becomes substantially stronger than in the absence of these groups; this strengthening is typically attributed to the formation of capillary bridges between the particles. However, this work shows that part of the increase of the interaction is due to the direct hydrogen bonds formed between the surfaces of the polar particles. Dry nitrogen was used to fluidize polar (hydrophilic) and apolar (hydrophobic) SiO2, TiO2 and Al2O3 particles, with a size ranging from 13 to 21 nm. The dry polar particles showed smaller bed expansion and larger minimum fluidization velocity compared to their apolar counterparts, indicating stronger interparticle forces. The results show the importance of including the formation of hydrogen bonds in the modeling of the interaction between dry and polar nanoparticles.

Graphical abstract: The role of the hydrogen bond in dense nanoparticle–gas suspensions

Back to tab navigation

Article information


Submitted
18 Oct 2012
Accepted
19 Feb 2013
First published
19 Feb 2013

This article is Open Access

Phys. Chem. Chem. Phys., 2013,15, 5788-5793
Article type
Paper

The role of the hydrogen bond in dense nanoparticle–gas suspensions

M. Tahmasebpoor, L. de Martín, M. Talebi, N. Mostoufi and J. R. van Ommen, Phys. Chem. Chem. Phys., 2013, 15, 5788
DOI: 10.1039/C3CP43687J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements