Issue 23, 2011

A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations

Abstract

Recently observed anomalous properties of ionic-liquid-based nanoporous supercapacitors [C. Largot et al., J. Am. Chem. Soc., 2008, 130, 2730–2731] have attracted much attention. Here we present Monte Carlo simulations of a model ionic liquid in slit-like metallic nanopores. We show that exponential screening of the electrostatic interactions of ions inside a pore, as well as the image–charge attraction of ions to the pore surface, lead to the ‘anomalous’ increase of the capacitance with decreasing the pore width. The simulation results are in good agreement with the experimental data. The capacitance as a function of voltage is almost constant for low voltages and vanishes above a certain threshold voltage. For very narrow pores, these two regions are separated by a peak. With increase of the pore size the peak turns into a bump and disappears for wide pores. This effect, related to a specific character of the voltage-induced filling of nanopores with counterions at high densities, is yet to be verified experimentally.

Graphical abstract: A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations

Article information

Article type
Paper
Submitted
16 Mar 2011
Accepted
19 Apr 2011
First published
13 May 2011

Phys. Chem. Chem. Phys., 2011,13, 11359-11366

A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations

S. Kondrat, N. Georgi, M. V. Fedorov and A. A. Kornyshev, Phys. Chem. Chem. Phys., 2011, 13, 11359 DOI: 10.1039/C1CP20798A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements