Issue 22, 2011

A mesoscopic model for protein enzymatic dynamics in solution

Abstract

A multi-scale, coarse-grained description of protein conformational dynamics in a solvent is presented. The focus of the paper is on the description of the conformational motions that may accompany enzyme catalysis as the enzyme executes a catalytic cycle, starting with substrate binding and ending with product release and return to the original unbound enzyme. The protein is modeled by a network of beads representing amino acid residues, the solvent is described by multiparticle collision dynamics, and substrate binding and unbinding events are modeled stochastically by conformation-dependent transitions that modify the bonding in the network to correspond to the different binding states of the protein. The solvent dynamics is coupled to that of the protein and hydrodynamic interactions, which are important for the large-scale protein motions, are taken into account. The multi-scale model is used to study the dynamics of the adenylate kinase enzyme in solution. A potential function that describes the different binding and conformational states of the protein and accounts for partial unfolding during the catalytic cycle is constructed as a network built from elastic network and soft potential links. The conformational dynamics of the protein as it undergoes cyclic enzymatic dynamics, as well as its translational diffusion and orientational motion, are investigated using both multiparticle collision dynamics and dynamics that suppresses hydrodynamic coupling. Hydrodynamic interactions are found to have important effects on the large scale conformational motions of the protein and significantly affect the translational diffusion coefficients and orientational correlation times.

Graphical abstract: A mesoscopic model for protein enzymatic dynamics in solution

Article information

Article type
Paper
Submitted
02 Jan 2011
Accepted
01 Mar 2011
First published
25 Mar 2011

Phys. Chem. Chem. Phys., 2011,13, 10527-10537

A mesoscopic model for protein enzymatic dynamics in solution

C. Echeverria, Y. Togashi, A. S. Mikhailov and R. Kapral, Phys. Chem. Chem. Phys., 2011, 13, 10527 DOI: 10.1039/C1CP00003A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements