Issue 9, 2011

Adsorptive behavior of CO2, CH4 and their mixtures in carbon nanospace: a molecular simulation study

Abstract

Using molecular simulation, four types of nanoporous carbons are examined as adsorbents for the separation of CO2/CH4 mixtures at ambient temperature and pressures up to 10 MPa. First, the adsorption selectivity of CO2 is investigated in carbon slit pores and single-walled carbon nanotube bundles in order to find the optimal pore dimensions for CO2 separation. Then, the adsorptive properties of the optimized slit pore and nanotube bundle are compared with two realistic nanoporous carbon models: a carbon replica of zeolite Y and an amorphous carbon. For the four carbon models, adsorption isotherms and isosteric heats of adsorption are presented for both pure components and mixtures. Special attention is given to the calculation of excess isotherms and isosteric heats, which are necessary to assess the performance of model nanoporous materials in the context of experimental measurements. From these results, we discuss the impact that variables such as pore size, pore morphology, pressure and mixture composition have on the performance of nanoporous carbons for CO2 separation.

Graphical abstract: Adsorptive behavior of CO2, CH4 and their mixtures in carbon nanospace: a molecular simulation study

Article information

Article type
Paper
Submitted
26 Oct 2010
Accepted
29 Nov 2010
First published
14 Jan 2011

Phys. Chem. Chem. Phys., 2011,13, 3985-3996

Adsorptive behavior of CO2, CH4 and their mixtures in carbon nanospace: a molecular simulation study

J. C. Palmer, J. D. Moore, T. J. Roussel, J. K. Brennan and K. E. Gubbins, Phys. Chem. Chem. Phys., 2011, 13, 3985 DOI: 10.1039/C0CP02281K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements