Issue 10, 2011

Determination of the temperature dependence of the dynamic nuclear polarisation enhancement of water protons at 3.4 Tesla

Abstract

It is shown that the temperature dependence of the DNP enhancement of the NMR signal from water protons at 3.4 T using TEMPOL as a polarising agent can be obtained provided that the nuclear relaxation, T1I, is sufficiently fast and the resolution sufficient to measure the 1H NMR shift. For high radical concentrations (∼100 mM) the leakage factor is approximately 1 and, provided sufficient microwave power is available, the saturation factor is also approximately 1. In this situation the DNP enhancement is solely a product of the ratio of the electron and nuclear gyromagnetic ratios and the coupling factor enabling the latter to be directly determined. Although the use of high microwave power levels needed to ensure saturation causes rapid heating of the sample, this does not prevent maximum DNP enhancements, ε0, being obtained since T1I is very much less than the characteristic heating time at these concentrations. It is necessary, however, to know the temperature variation of T1I to allow accurate modelling of the behaviour. The DNP enhancement is found to vary linearly with temperature with ε0(T) = −2 ± 2 − (1.35 ± 0.02)T for 6 °C ≤ T ≤ 100 °C. The value determined for the coupling factor, 0.055 ± 0.003 at 25 °C, agrees very well with the molecular dynamics simulations of Sezer et al. (Phys. Chem. Chem. Phys., 2009, 11, 6626) who calculated 0.0534, however the experimental values increase much more rapidly with increasing temperature than predicted by these simulations. Large DNP enhancements (|ε0| > 100) are reported at high temperatures but it is also shown that significant enhancements (e.g. ∼40) can be achieved whilst maintaining the sample temperature at 40 °C by adjusting the microwave power and irradiation time. In addition, short polarisation times enable rapid data acquisition which permits further enhancement of the signal, such that useful liquid state DNP-NMR experiments could be carried out on very small samples.

Graphical abstract: Determination of the temperature dependence of the dynamic nuclear polarisation enhancement of water protons at 3.4 Tesla

Article information

Article type
Paper
Submitted
18 Oct 2010
Accepted
09 Dec 2010
First published
24 Jan 2011

Phys. Chem. Chem. Phys., 2011,13, 4372-4380

Determination of the temperature dependence of the dynamic nuclear polarisation enhancement of water protons at 3.4 Tesla

E. V. Kryukov, K. J. Pike, T. K. Y. Tam, M. E. Newton, M. E. Smith and R. Dupree, Phys. Chem. Chem. Phys., 2011, 13, 4372 DOI: 10.1039/C0CP02188A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements