Issue 36, 2010

The influence of concentration on the molecular surface structure of simple and mixed aqueous electrolytes

Abstract

We investigate various mechanisms contributing to the surface ion distributions in simple and mixed aqueous alkali-halide solutions depending on the total salt concentration, using a combination of photoelectron spectroscopy and molecular dynamics simulations. In simple solutions, the surface enhancement of large polarizable anions is reduced with increasing concentration. In the case of a NaBr/NaCl mixed aqueous solution, with bromide as the minority component, the situation is more complex. While the total anion/cation charge separation is similarly reduced with increasing salt content, this alone does not uniquely determine the ion distribution due to the co-existence of two different anions, Br and Cl. We show that bromide is selectively surface enhanced at higher concentrations, despite the fact that the total anion surface enhancement is reduced. This phenomenon, which can be viewed as “salting out” of bromide by NaCl might have consequences for our understanding of the surface structure of mixed aqueous solutions subjected to concentration increase due to dehydration, such as seawater-born aerosols.

Graphical abstract: The influence of concentration on the molecular surface structure of simple and mixed aqueous electrolytes

Article information

Article type
Paper
Submitted
27 Apr 2010
Accepted
14 Jun 2010
First published
08 Jul 2010

Phys. Chem. Chem. Phys., 2010,12, 10693-10700

The influence of concentration on the molecular surface structure of simple and mixed aqueous electrolytes

N. Ottosson, J. Heyda, E. Wernersson, W. Pokapanich, S. Svensson, B. Winter, G. Öhrwall, P. Jungwirth and O. Björneholm, Phys. Chem. Chem. Phys., 2010, 12, 10693 DOI: 10.1039/C0CP00365D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements