Issue 48, 2009

A multi-technique approach to the analysis of SAMs of aromatic thiols on copper

Abstract

The adsorption of aromatic thiols on Cu and the SAM film stability in acidic solutions have been studied by XPS, contact angle and electrochemical techniques. Three short molecules, benzenethiol (BT), 2-naphthalenethiol (2-NT) and 4-acetamidothiophenol (4-AA), were selected as representatives of aromatic thiols to highlight the effect of aromatic rings and hydrophilic terminal groups on the copper protection. All the three molecules form stable S–Cu bonds as a consequence of their adsorption process on polycrystalline copper. Although none of them provides a full copper passivation, the adsorbed films persist without major degradation on Cu electrodes even after 12 h immersion in 0.5 M sulfuric acid. Comparing the freshly prepared adsorbed films, the larger 2-NT molecule provides a better Cu passivation, but the shorter BT molecule favours a higher surface coverage. The terminal groups of 4-AA are responsible for a higher Cu surface wettability in water, compared to that with SAMs of the other molecules, and allow for an easier charge-transfer to the electrolyte and for a higher electrochemical capacitance. After long enough ageing, however, the 4-AA-based molecular films are able to self-organize and to provide a steadily improving copper passivation. Adlayers of the BT and 2-NT molecules, on the contrary, over a long time tend to protect less and less the Cu substrate, probably because of progressive electrolyte infiltration.

Graphical abstract: A multi-technique approach to the analysis of SAMs of aromatic thiols on copper

Article information

Article type
Paper
Submitted
16 Jun 2009
Accepted
02 Oct 2009
First published
06 Nov 2009

Phys. Chem. Chem. Phys., 2009,11, 11624-11630

A multi-technique approach to the analysis of SAMs of aromatic thiols on copper

F. Caprioli, M. Beccari, A. Martinelli, V. Di Castro and F. Decker, Phys. Chem. Chem. Phys., 2009, 11, 11624 DOI: 10.1039/B911834A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements