Issue 31, 2009

Site-specific dynamic nuclear polarization of hydration water as a generally applicable approach to monitor protein aggregation

Abstract

We present a generally applicable approach for monitoring protein aggregation by detecting changes in surface hydration water dynamics and the changes in solvent accessibility of specific protein sites, as protein aggregation proceeds in solution state. This is made possible through the Overhauser dynamic nuclear polarization (DNP) of water interacting with stable nitroxide spin labels tethered to specific proteins sites. This effect is highly localized due to the magnetic dipolar nature of the electron–proton spin interaction, with >80% of their interaction occurring within 5 Å between the unpaired electron of the spin label and the proton of water. We showcase our tool on the aggregation of tau proteins, whose fibrillization is linked to neurodegenerative disease pathologies known as taupathies. We demonstrate that the DNP approach to monitor local changes in hydration dynamics with residue specificity and local contrast can distinguish specific and neat proteinprotein packing leading to fibers from non-specific protein agglomeration or precipitation. The ability to monitor tau assembly with local, residue-specific, resolution, under ambient conditions and in solution state will help unravel the mechanism and structural characteristics of the gradual process of tau aggregation into amyloid fibers, which remains unclear to this day.

Graphical abstract: Site-specific dynamic nuclear polarization of hydration water as a generally applicable approach to monitor protein aggregation

Article information

Article type
Paper
Submitted
26 Mar 2009
Accepted
28 May 2009
First published
29 Jun 2009

Phys. Chem. Chem. Phys., 2009,11, 6833-6839

Site-specific dynamic nuclear polarization of hydration water as a generally applicable approach to monitor protein aggregation

A. Pavlova, E. R. McCarney, D. W. Peterson, F. W. Dahlquist, J. Lew and S. Han, Phys. Chem. Chem. Phys., 2009, 11, 6833 DOI: 10.1039/B906101K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements