Issue 31, 2009

Three-spin correlations in double electron–electron resonance

Abstract

Distance measurements by pulse electron paramagnetic resonance techniques are increasingly applied to systems that contain more than two spin labels. Under typical experimental conditions this leads to signal contributions from sum and difference combinations of dipolar frequencies. As these contributions are neglected in the expressions used in data analysis they cause artifacts in distance distributions. It is shown that the artifacts lead to substantial broadening of the distance distribution. By measuring double electron–electron resonance (DEER) data with variable inversion efficiency of the pump pulse and fitting the data at each point in time by appropriate polynomials the pair contribution can be separated from the three-spin contribution. Experiments on a conformationally invariant triradical with equilateral triangle geometry and the corresponding biradical with the same interspin distance demonstrate that this approach leads to a considerable improvement in the distance distribution. The three-spin contribution is shown to provide information on angles between spin–spin vectors. Data for a series of triradicals with equilateral, isosceles, and scalene triangle geometry are analysed by fitting a general triangle model simultaneously to the dipolar spectra of the pair and three-spin contribution. The agreement with the expected side lengths of the triangles is satisfying.

Graphical abstract: Three-spin correlations in double electron–electron resonance

Supplementary files

Article information

Article type
Paper
Submitted
23 Mar 2009
Accepted
09 Apr 2009
First published
20 May 2009

Phys. Chem. Chem. Phys., 2009,11, 6580-6591

Three-spin correlations in double electron–electron resonance

G. Jeschke, M. Sajid, M. Schulte and A. Godt, Phys. Chem. Chem. Phys., 2009, 11, 6580 DOI: 10.1039/B905724B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements