Issue 4, 2008

A new mechanism for ozonolysis of unsaturated organics on solids: phosphocholines on NaCl as a model for sea salt particles

Abstract

The ozonolysis of an approximately one monolayer film of 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (OPPC) on NaCl was followed in real time using diffuse reflection infrared Fourier transform spectrometry (DRIFTS) at 23 °C. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry and Auger electron spectroscopy were used to confirm the identification of the products. Ozone concentrations ranged from 1.7 × 1012 to 7.0 × 1013 molecules cm–3 (70 ppb to 2.8 ppm). Upon exposure to O3, there was a loss of C[double bond, length as m-dash]C accompanied by the formation of a strong band at ∼1110 cm–1 due to the formation of a stable secondary ozonide (1,2,4-trioxolane, SOZ). The yield of the SOZ was smaller when the reaction was carried out in the presence of water vapor at concentrations corresponding to relative humidities between 2 and 25%. The dependencies of the rate of SOZ formation on the concentrations of ozone and water vapor are consistent with the initial formation of a primary ozonide (1,2,3-trioxolane, POZ) that can react with O3 or H2O in competition with its thermal decomposition to a Criegee intermediate and aldehyde. Estimates were obtained for the rate constants for the POZ thermal decomposition and for its reactions with O3 and H2O, as well as for the initial reaction of O3 with OPPC. The SOZ decomposed upon photolysis in the actinic region generating aldehydes, carboxylic acids and anhydrides. These studies show that the primary ozonide has a sufficiently long lifetime when formed on a solid substrate that direct reactions with O3 and H2O can compete with its thermal decomposition. In dry polluted atmospheres, ozonealkene reactions may lead in part to the formation of stable secondary ozonides whose chemistry, photochemistry and toxicity should be taken into account in models of such regions.

Graphical abstract: A new mechanism for ozonolysis of unsaturated organics on solids: phosphocholines on NaCl as a model for sea salt particles

Additions and corrections

Article information

Article type
Paper
Submitted
17 Aug 2007
Accepted
13 Nov 2007
First published
04 Dec 2007

Phys. Chem. Chem. Phys., 2008,10, 528-541

A new mechanism for ozonolysis of unsaturated organics on solids: phosphocholines on NaCl as a model for sea salt particles

F. Karagulian, A. Scott Lea, C. W. Dilbeck and B. J. Finlayson-Pitts, Phys. Chem. Chem. Phys., 2008, 10, 528 DOI: 10.1039/B712715D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements