Issue 43, 2006

Biosensing with conically shaped nanopores and nanotubes

Abstract

In this review we consider recent results from our group that are directed towards developing “smart” synthetic nanopores that can mimic the functions of biological nanopores (transmembrane proteins). We first discuss the preparation and characterization of conical nanopores synthesized using the track-etch process. We then consider the design and function of conical nanopores that can rectify the ionic current that flows through these pores under an applied transmembrane potential. Finally, two types of sensors that we have developed with these conical nanopores are described. The first sensor makes use of molecular recognition elements that are bound to the nanopore mouth to selectively block the nanopore tip, thus detecting the presence of the analyte. The second sensor makes use of conical nanopores in a resistive-pulse type experiment, detecting the analyte via transient blockages in ionic current.

Graphical abstract: Biosensing with conically shaped nanopores and nanotubes

Additions and corrections

Article information

Article type
Invited Article
Submitted
24 May 2006
Accepted
27 Jul 2006
First published
07 Aug 2006

Phys. Chem. Chem. Phys., 2006,8, 4976-4988

Biosensing with conically shaped nanopores and nanotubes

Y. Choi, L. A. Baker, H. Hillebrenner and C. R. Martin, Phys. Chem. Chem. Phys., 2006, 8, 4976 DOI: 10.1039/B607360C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements