Issue 3, 2006

Gas-phase reactions of NO3 and N2O5 with (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol (‘leaf alcohol’), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol

Abstract

The night-time atmospheric chemistry of the biogenic volatile organic compounds (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol (‘leaf alcohol’), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO3) with these stress-induced plant emissions were measured using the discharge–flow technique. We employed off-axis continuous-wave cavity-enhanced absorption spectroscopy (CEAS) for the detection of NO3, which enabled us to work in excess of the hexenol compounds over NO3. The rate coefficients determined were (2.93 ± 0.58) × 10−13 cm3 molecule−1 s−1, (2.67 ± 0.42) × 10−13 cm3 molecule−1 s−1, (4.43 ± 0.91) × 10−13 cm3 molecule−1 s−1, (1.56 ± 0.24) × 10−13 cm3 molecule−1 s−1, and (1.30 ± 0.24) × 10−13 cm3 molecule−1 s−1 for (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol, (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol. The rate coefficient for the reaction of NO3 with (Z)-hex-3-en-1-ol agrees with the single published determination of the rate coefficient using a relative method. The other rate coefficients have not been measured before and are compared to estimated values. Relative-rate studies were also performed, but required modification of the standard technique because N2O5 (used as the source of NO3) itself reacts with the hexenols. We used varying excesses of NO2 to determine simultaneously rate coefficients for reactions of NO3 and N2O5 with (E)-hex-3-en-1-ol of (5.2 ± 1.8) × 10−13 cm3 molecule−1 s−1 and (3.1 ± 2.3) × 10−18 cm3 molecule−1 s−1. Our new determinations suggest atmospheric lifetimes with respect to NO3-initiated oxidation of roughly 1–4 h for the hexenols, comparable with lifetimes estimated for the atmospheric degradation by OH and shorter lifetimes than for attack by O3. Recent measurements of [N2O5] suggest that the gas-phase reactions of N2O5 with unsaturated alcohols will not be of importance under usual atmospheric conditions, but they certainly can be in laboratory systems when determining rate coefficients.

Graphical abstract: Gas-phase reactions of NO3 and N2O5 with (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol (‘leaf alcohol’), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol

Article information

Article type
Paper
Submitted
29 Jul 2005
Accepted
17 Oct 2005
First published
03 Nov 2005

Phys. Chem. Chem. Phys., 2006,8, 354-363

Gas-phase reactions of NO3 and N2O5 with (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol (‘leaf alcohol’), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol

C. Pfrang, R. S. Martin, C. E. Canosa-Mas and R. P. Wayne, Phys. Chem. Chem. Phys., 2006, 8, 354 DOI: 10.1039/B510835G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements