Issue 8, 2001

Bone mineral: evidence for hydroxy groups by inelastic neutron scattering

Abstract

Inelastic neutron scattering (INS) spectroscopy which is especially sensitive to vibrations of groups with hydrogen has been used to resolve the extent of substitutions at the hydroxy group site in bone. Bone is a complex material consisting of a mineral apatite (Ca5(PO4)3 OH), in an extracellular protein matrix. Many aspects concerning the composition of the mineral are controversial. It has been suggested that there is complete substitution by carbonate at the hydroxy site. Bands assigned to hydroxy vibrations are often not resolved in the infrared and Raman spectra. We show, by INS, that in ox femur bone 40–50% of the hydroxy groups are not substituted. The inelastic neutron scattering experiment opens up new opportunities to monitor changes in bone composition which are important in bone ageing and some pathological conditions.

Article information

Article type
Paper
Submitted
13 Jul 2000
Accepted
14 Feb 2001
First published
14 Mar 2001

Phys. Chem. Chem. Phys., 2001,3, 1514-1517

Bone mineral: evidence for hydroxy groups by inelastic neutron scattering

M. G. Taylor, S. F. Parker, K. Simkiss and P. C. H. Mitchell, Phys. Chem. Chem. Phys., 2001, 3, 1514 DOI: 10.1039/B005666I

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements