Issue 11, 2000

Conversion of n-pentane and of n-butane catalyzed by platinum-containing WOx/TiO2

Abstract

Tungstated titania, with and without platinum, was used to catalyze the conversion of n-butane and of n-pentane at atmospheric pressure and temperatures in the range of 423–573 K, both in the presence and in the absence of H2 in the feed stream to a flow reactor. The catalysts were active for isomerization and cracking, and the products included alkenes, in contrast to those observed in catalysis by tungstated zirconia. The catalytic activity of tungstated titania is much less than that of sulfated zirconia and similar to that of tungstated zirconia. The results characterizing tungstated titania indicate a bifunctional reaction network involving metal and acidic sites responsible for hydrogenation/dehydrogenation and carbenium ion reactions, respectively. Platinum in the catalyst and H2 in the feed strongly suppress the otherwise rapid catalyst deactivation associated with coke deposition. The catalyst was found to be stable after a period of initial deactivation, and kinetics data are reported for partially deactivated catalysts. High platinum contents lead to high selectivities for cracking in the presence of H2 and high selectivities for unsaturated products in the absence of H2. Increasing tungsten loadings raise catalyst acidity and favor isomerization. The performance of tungstated titania containing platinum resembles that of the zirconia-based catalysts less than it resembles the performance of platinum supported on (chlorided) alumina, a well-known naphtha reforming catalyst.

Article information

Article type
Paper
Submitted
05 Jan 2000
Accepted
06 Apr 2000
First published
11 May 2000

Phys. Chem. Chem. Phys., 2000,2, 2565-2573

Conversion of n-pentane and of n-butane catalyzed by platinum-containing WOx/TiO2

S. Eibl, R. E. Jentoft, B. C. Gates and H. Knözinger, Phys. Chem. Chem. Phys., 2000, 2, 2565 DOI: 10.1039/B000054J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements