Issue 2, 2000

Role of rotamerisation and excited state intramolecular proton transfer in the photophysics of 2-(2′-hydroxyphenyl)benzoxazole, 2-(2′-hydroxyphenyl)benzimidazole and 2-(2′-hydroxyphenyl)benzothiazole: a theoretical study

Abstract

Semiempirical (AM1-SCI) calculations have been performed to rationalise the experimental findings in relation to the photophysics of 2-(2′-hydroxyphenyl)benzoxazole (HBO), 2-(2′-hydroxyphenyl)benzimidazole (HBI) and 2-(2′-hydroxyphenyl)benzothiazole (HBT). The calculations reveal that, while for HBO and HBI, two rotameric isomers are present in the ground state, there is only one stable species in the S0 state of HBT. Excited state intramolecular proton transfer (ESIPT) reaction is, however, operative in the lowest excited singlet (S1) and triplet (T1) states for all the three molecular systems; resulting altogether three fluorescence bands for HBO and HBI and two for HBT. The excitation, fluorescence and phosphorescence bands have been assigned theoretically. The calculated results agree well with the existing experimental reports. The potential energy surfaces (PES) have been generated for the intramolecular proton transfer (IPT) reactions. The PES reflect that although the IPT process is not favourable in the ground state, the ESIPT process is feasible, both thermodynamically as well as kinetically, for all the three molecular systems in the S1 as well as T1 states.

Article information

Article type
Paper
Submitted
19 Oct 1999
Accepted
22 Nov 1999
First published
07 Jan 2000

Phys. Chem. Chem. Phys., 2000,2, 203-210

Role of rotamerisation and excited state intramolecular proton transfer in the photophysics of 2-(2′-hydroxyphenyl)benzoxazole, 2-(2′-hydroxyphenyl)benzimidazole and 2-(2′-hydroxyphenyl)benzothiazole: a theoretical study

P. Purkayastha and N. Chattopadhyay, Phys. Chem. Chem. Phys., 2000, 2, 203 DOI: 10.1039/A908359F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements