Issue 24, 1999

FT-IR product study of the photo-oxidation of dimethyl sulfide: Temperature and O2 partial pressure dependence

Abstract

The products of the OH-radical initiated oxidation of dimethyl sulfur (DMS) have been investigated under NOx free conditions using the photolysis of H2O2 as the OH radical source and FT-IR spectroscopy to monitor reactants and products at 1000 mbar total pressure (N2+O2). The products were investigated as a function of the temperature (284, 295 and 306±2 K) and the O2 partial pressure (20, 200 and 500 mbar). Dimethyl sulfoxide (DMSO), SO2 and methane sulfonic acid (MSA: CH3SO3H) were the major sulfur-containing products and evidence has been found for the formation of methane sulfinic acid (MSIA: CH3S(O)OH) in considerable yield. The variation of the formation of DMSO and SO2 with temperature and O2 partial pressure is consistent with a mechanism involving both addition and abstraction channels. The molar formation yields of DMSO support that a major fraction of the OH-DMS adduct formed in the addition channel reacts with O2 to form DMSO. Due to the uncertainty in the literature rate coefficients used for the corrections in the formation yield of DMSO the possibility of other channels cannot be completely excluded. High overall molar formation yields of SO2 have been measured, suggesting that further oxidation of the products in both the addition and abstraction channels result mainly in SO2 production under the NOx free conditions employed in the experiments. Consideration is made of the implications of the results for the atmospheric oxidation of DMS under conditions of low NOx such as occur in the remote marine boundary layer.

Article information

Article type
Paper

Phys. Chem. Chem. Phys., 1999,1, 5463-5470

FT-IR product study of the photo-oxidation of dimethyl sulfide: Temperature and O2 partial pressure dependence

C. Arsene,, I. Barnes and K. H. Becker, Phys. Chem. Chem. Phys., 1999, 1, 5463 DOI: 10.1039/A907211J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements