Issue 16, 1999

Dynamics of benzene, cyclohexane and n-hexane in KL zeolite studied by 2H NMR

Abstract

Molecular motions of benzene-d6, cyclohexane-d12 and n-hexane-d14 sorbed at loading levels of 1 molecule per channel lobe in KL zeolite have been studied by 2H NMR. The spectra were recorded in the temperature range from 124 to 373 K, and they were successfully simulated. At low temperatures, benzene molecules rotate fast around the C6 axis, and cyclohexane molecules rotate fast around the C3 axis of the chair form, where the directions of the rotation axis are fixed. With increase in temperature, benzene, cyclohexane, and n-hexane molecules start jumping among the six equivalent sites on K+ ions. Further increases in temperature results in the increase in the fraction of molecules located at the central space of the micropore which undergo isotropic motions and exchange with the molecules on the K+ ions. The mean residence time on the K+ ion is in the following order: benzene-d6>cyclohexane-d12>n-hexane-d14. The apparent activation energies derived from the mean residence times are 28.0±1.6 kJ mol-1 (220 K⩽T⩽373 K) for benzene-d6, 9.6±1.2 kJ mol-1 (160 K⩽T⩽260 K) and 44.3±3.6 kJ mol-1 (280 K⩽T⩽373 K) for cyclohexane-d12, and about 10 kJ mol-1 for n-hexane-d14. The large activation energy at the high temperatures in cyclohexane-d12 might be caused by the conformation inversion of the cyclohexane ring. The ratios of the numbers of molecules in the central space to those on the K+ ions are in the order of benzene-d6<cyclohexane-d12<n-hexane-d14. In conclusion, the interaction between the guest molecules and KL zeolite is in the following decreasing order: benzene-d6>cyclohexane-d12>n-hexane-d14.

Article information

Article type
Paper

Phys. Chem. Chem. Phys., 1999,1, 3839-3843

Dynamics of benzene, cyclohexane and n-hexane in KL zeolite studied by 2H NMR

T. Sato, K. Kunimori and S. Hayashi, Phys. Chem. Chem. Phys., 1999, 1, 3839 DOI: 10.1039/A903786A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements