Issue 1, 1999

The passage of gases through the liquid water/vapour interface: a simulation study

Abstract

We have used atomistic simulation to measure the free energy profiles for a number of molecules crossing the air/liquid water interface at room temperature. The principal molecules studied were CO2 and N2, both common molecules with quadrupole moments; in addition some results were obtained for CH3CN, an example of a dipolar molecule, and Ar which has no electrostatic interaction with water. Our aim is to establish these profiles in order to provide a foundation for understanding the kinetics of gas uptake across the vapour/liquid interface and to understand them in terms of local structure at the molecular level. We found that there is a free energy minimum corresponding to a surface-adsorbed site in each case and that for N2 and CO2 there is a free energy barrier to passage from the bulk solution to the surface-adsorbed site. We discuss these results in terms of the local structure and in relation to some theoretical models of gas uptake.

Article information

Article type
Paper

Phys. Chem. Chem. Phys., 1999,1, 143-148

The passage of gases through the liquid water/vapour interface: a simulation study

T. Somasundaram, R. M. Lynden-Bell and C. H. Patterson, Phys. Chem. Chem. Phys., 1999, 1, 143 DOI: 10.1039/A805067H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements