Issue 40, 2018

Size and surface effects on chemically-induced joining of Ag conductive inks

Abstract

Direct write (DW) technologies offer a potential avenue towards reducing existing long lead times required for fabrication of prototypes and evaluation of new materials and integrated circuit designs. Nanostructured metallic DW inks are widely utilized due to their excellent electrical conductivity which dictates the performance of printed sensors and circuits. Besides controlling the surface chemistry and rheology of these inks to control the print resolution, the essential joining of these conductive nanomaterials to create functional sensors and devices remains a challenge. Low-temperature interconnecting techniques are required to minimize the deleterious heat effects on the shape of printed conductive networks and electronic components. Therefore, the reduced melting temperatures characteristic of metallic nanomaterials offer opportunities to bridge this technological gap. Amongst the reported low-temperature sintering approaches, the chemically-induced sintering method emerges as a readily scalable approach with relatively low energy input. By uncovering the underlying relationship between particle size effects and the role of the ionic salts used to induce sintering under ambient conditions, we aim to elucidate the compatible chemistries (i.e., size and salt) to achieve optimal chemically-induced sintering. The sintering of polyacrylic acid-modified Ag nanoparticle-based DW inks of different size distributions (bimodal vs. monodispersed distribution) and average sizes (e.g., 5 nm and 17 nm) was systematically investigated to elucidate the role of a commonly used salt, NaCl, in the chemically-induced sintering process. An observed enhancement in our ink conductivities by about 4 orders of magnitude for the monodispersed 17 nm and bimodally distributed 9 and 170 nm particles resulted mainly from the sintering between neighboring Ag nanoparticles. In the case of monodispersed 5 nm nanoparticles, a low electrical resistivity was observed despite an increase in grain size which indicated successful sintering. The low measured electrical resistivity was mainly due to significant AgCl formation that had a lower electrical conductivity. Our results show that the chloride ions played an active role in triggering first the oxidative decomposition of Ag to Ag+ resulting in AgCl formation which subsequently led to the sintering between neighboring Ag nanoparticles. The difference in the results for the 5 nm and 17 nm monodispersed Ag nanoparticles was attributed to the differences in the size-dependent surface reactivities and relative amounts (i.e., packing density, thickness) of the polymeric PAA coating.

Graphical abstract: Size and surface effects on chemically-induced joining of Ag conductive inks

Supplementary files

Article information

Article type
Paper
Submitted
19 Jul 2018
Accepted
03 Sep 2018
First published
04 Sep 2018

CrystEngComm, 2018,20, 6300-6309

Size and surface effects on chemically-induced joining of Ag conductive inks

Y. Wu, Z. Wang, X. Zhao and M. C. Tan, CrystEngComm, 2018, 20, 6300 DOI: 10.1039/C8CE01191E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements