Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 38, 2016
Previous Article Next Article

Optical properties of regioregular poly(3-hexylthiophene) aggregates from fully atomistic investigations

Author affiliations

Abstract

We report on a first-principle theoretical investigation of the optical absorption and emission spectra of poly(3-hexylthiophene) (P3HT) aggregates by means of a multiscale all-atom hybrid approach, which combines: (i) molecular dynamics simulations of (intrachain) conformational and (interchain) positional disorder, (ii) quantum-chemical calculations of intrachain excited states and excitonic interactions, and (iii) solving of a Frenkel–Holstein model that includes coupling of the electronic excitations to a dominant high-frequency molecular vibration. The modeling work points to the co-existence of ordered nano-aggregates into disordered domains, with the former dominating the emission spectrum while both regions contribute to the absorption spectrum. The measured photoluminescence line shape and the Stokes shift are both reproduced by the theory for aggregates comprising polymer chain with lengths ∼35–40 repeating units.

Graphical abstract: Optical properties of regioregular poly(3-hexylthiophene) aggregates from fully atomistic investigations

Back to tab navigation

Supplementary files

Article information


Submitted
22 Mar 2016
Accepted
01 Jun 2016
First published
01 Jun 2016

CrystEngComm, 2016,18, 7297-7304
Article type
Paper
Author version available

Optical properties of regioregular poly(3-hexylthiophene) aggregates from fully atomistic investigations

L. Wang and D. Beljonne, CrystEngComm, 2016, 18, 7297
DOI: 10.1039/C6CE00645K

Social activity

Search articles by author

Spotlight

Advertisements