Issue 22, 2016

Particle size effects in the kinetic trapping of a structurally-locked form of a flexible MOF

Abstract

The application of metal–organic frameworks (MOFs) for gas storage, molecular separations and catalysis necessitates careful consideration of the particle size and structuralisation (e.g. pelletisation, surface-anchoring) of a material. Recently, particle size has been shown to dramatically alter the physical and structural properties of certain MOFs, but overall there is limited information on how the particle size affects the properties of flexible MOFs. Here we demonstrate that the particle size of a flexible MOF, specifically the as-synthesised form of [Cu(bcppm)H2O]·S (H2bcppm = bis(4-(4-carboxyphenyl)-1H-pyrazolyl)methane, S = solvent) (1), correlates with the rate of structural reorganisation from a “kinetically-trapped”, activated 3D form of this MOF to an “open” 2D form of the structure. We also outline two methods for synthetically reducing the particle size of 1 at room temperature, using 0.1 M NaOH (for two reaction times: 0.5 and 16 h) and with the sodium salt of the ligand Na2bcppm, producing crystals of 85 ± 15, 280 ± 14 and 402 ± 41 nm, respectively.

Graphical abstract: Particle size effects in the kinetic trapping of a structurally-locked form of a flexible MOF

Supplementary files

Article information

Article type
Paper
Submitted
13 Jan 2016
Accepted
05 Feb 2016
First published
08 Feb 2016

CrystEngComm, 2016,18, 4172-4179

Author version available

Particle size effects in the kinetic trapping of a structurally-locked form of a flexible MOF

O. M. Linder-Patton, W. M. Bloch, C. J. Coghlan, K. Sumida, S. Kitagawa, S. Furukawa, C. J. Doonan and C. J. Sumby, CrystEngComm, 2016, 18, 4172 DOI: 10.1039/C6CE00082G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements