Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 22, 2016
Previous Article Next Article

Selective formation of Ag domains on MnO nanooctapods for potential dual imaging probes

Author affiliations

Abstract

In the present study, the growth of Ag domains on the surface of MnO octapods yielded a uniform MnO octapod–Ag heterodimer structure by a phase-transfer protocol in toluene. The Ag domains were selectively formed on one of the high index surfaces of the MnO octapods. The resulting MnO–Ag heterodimers have basically two independent domains. On this basis, multiple functions are expected, including plasmon light scattering from the Ag domains and magnetic resonance from the MnO domains. Notably, the heterodimers strongly scattered visible light at 420 nm, and even a single particle signal could be detected in a dark-field spectroscopy image. The scattering peak was extended to the near-IR range by the formation of MnO octapod–AgAu hollow heterodimers via a galvanic replacement reaction. The heterodimers also showed weak ferromagnetism at low temperature, and exhibited a positive T1 signal in magnetic resonance imaging. These properties demonstrate that the MnO–Ag heterodimers can potentially serve as dual imaging probes for biological systems.

Graphical abstract: Selective formation of Ag domains on MnO nanooctapods for potential dual imaging probes

Back to tab navigation

Supplementary files

Article information


Submitted
18 Dec 2015
Accepted
05 Feb 2016
First published
08 Feb 2016

CrystEngComm, 2016,18, 4188-4195
Article type
Paper

Selective formation of Ag domains on MnO nanooctapods for potential dual imaging probes

D. Shin, Y. Park, H. Ryu, W. S. Seo and H. Song, CrystEngComm, 2016, 18, 4188
DOI: 10.1039/C5CE02486B

Social activity

Search articles by author

Spotlight

Advertisements