Jump to main content
Jump to site search

Issue 30, 2015
Previous Article Next Article

Alloyed CuInS2–ZnS nanorods: synthesis, structure and optical properties

Author affiliations

Abstract

Alloyed CuInS2–ZnS nanocrystals are promising candidates for application in biolabeling, photocatalysis, solar energy conversion, and light emitting diodes. When charge transport is of importance, elongated nanoparticles are advantageous, because of their higher electrical conductivity compared to the quasi-spherical ones. However, still little is known about the growth mechanism of such nanostructures composed of quaternary materials. Here, CuInS2–ZnS nanorods were synthesized by a heating-up method, and their Zn content was controlled by changing the composition of the reaction solution. A mixture of oleylamine and oleic acid is used as solvent. Copper, indium, and zinc acetate are the sources of the cations, while sulfur monomers stem from the thermal decomposition of tert-dodecanethiol. The growth of CuInS2–ZnS nanorods starts with the formation of copper sulfide particles. They are gradually converted to CuInS2–ZnS by incorporation of indium and zinc ions. Alloyed CuInS2–ZnS nanorods are the only product, independent of the amount of zinc applied; Raman spectroscopy measurements show no separate ZnS phase. At longer reaction time, the nanorods aggregate to form dimers. The onset of the absorption and the position of the maximum of the emission as well as the fluorescence lifetime depend on the composition of the nanorods.

Graphical abstract: Alloyed CuInS2–ZnS nanorods: synthesis, structure and optical properties

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Feb 2015, accepted on 28 Apr 2015 and first published on 28 Apr 2015


Article type: Paper
DOI: 10.1039/C5CE00380F
CrystEngComm, 2015,17, 5634-5643
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Alloyed CuInS2–ZnS nanorods: synthesis, structure and optical properties

    J. Li, B. Kempken, V. Dzhagan, D. R. T. Zahn, J. Grzelak, S. Mackowski, J. Parisi and J. Kolny-Olesiak, CrystEngComm, 2015, 17, 5634
    DOI: 10.1039/C5CE00380F

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements