Issue 6, 2013

Solvent quality-induced nucleation and growth of parallelepiped nanorods in dilute poly(3-hexylthiophene) (P3HT) solution and the impact on the crystalline morphology of solution-cast thin film

Abstract

Understanding the chain conformation of conjugated polymers in casting solutions and its impact on the crystalline morphology of solution-cast thin films is crucial for many electronic applications. Using small-angle neutron scattering, we show that well-dissolved poly(3-hexyl thiophene) (P3HT) chains in good solvent (chloroform) form long rectangular parallelepipeds (RPs) via nucleation and growth processes upon increasing the volume fraction of poor solvent (hexane) above a certain critical point. The growth of the RPs is due to the π–π stacking of the P3HT main backbone occurring along the long axis of the RPs. P3HT solutions prepared with different poor solvent volume fractions were drop-cast onto Si-wafers to prepare thin films, which were examined using 2D grazing-incidence X-ray scattering and 1D X-ray diffraction. The results indicate that the RPs grown in solution preferentially orient on the substrate with their two longer axes parallel to the surface after solvent evaporation, and give rise to much improved crystallinity and crystal orientation compared to the disordered chains.

Graphical abstract: Solvent quality-induced nucleation and growth of parallelepiped nanorods in dilute poly(3-hexylthiophene) (P3HT) solution and the impact on the crystalline morphology of solution-cast thin film

Article information

Article type
Paper
Submitted
11 Oct 2012
Accepted
19 Nov 2012
First published
19 Nov 2012

CrystEngComm, 2013,15, 1114-1124

Solvent quality-induced nucleation and growth of parallelepiped nanorods in dilute poly(3-hexylthiophene) (P3HT) solution and the impact on the crystalline morphology of solution-cast thin film

J. K. Keum, K. Xiao, I. N. Ivanov, K. Hong, J. F. Browning, G. S. Smith, M. Shao, K. C. Littrell, A. J. Rondinone, E. Andrew Payzant, J. Chen and D. K. Hensley, CrystEngComm, 2013, 15, 1114 DOI: 10.1039/C2CE26666K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements