Issue 3, 2013

Mid-infrared emissive InAsSb quantum dots grown by metal–organic chemical vapor deposition

Abstract

InAsSb islands/quantum dots (QDs) emitting at wavelength >2.8 μm were self-assembled on InP substrate by using metal–organic chemical vapor deposition (MOCVD). Instead of using arsine, the safer organic tert-butylarsine (TBAs) was used as the arsenic source in the growth process. Effects of the growth conditions, i.e. substrate temperature and the growth rate, on the InAsSb QD formations have been studied. A narrow temperature window from 450 °C to 470 °C was found for growing high quality InAsSb QDs. InAsSb rings instead of islands/dots were formed using the conventional Stranski–Krastanow (S–K) growth mode if the growth rate was low or if InAsSb was grown for a longer time. By increasing the V : III ratio for the InAsSb growth, InAsSb islands/dots were formed with the same growth rate. To reduce the dot size and increase the InAsSb QD density, an alternative interruption growth (AIG) method was proposed and investigated. Using the AIG growth method, much higher dot density of the InAsSb QDs has been achieved, about 3 × 109 cm−2, which is about 10 times of that of the QDs grown by using the conventional S–K growth method. Strong photoluminescence emissions of the InAsSb islands/dots were observed. At room temperature, the emission wavelength of the InAsSb islands/dots was measured at >2.8 μm.

Graphical abstract: Mid-infrared emissive InAsSb quantum dots grown by metal–organic chemical vapor deposition

Article information

Article type
Paper
Submitted
10 Aug 2012
Accepted
04 Nov 2012
First published
06 Nov 2012

CrystEngComm, 2013,15, 604-608

Mid-infrared emissive InAsSb quantum dots grown by metal–organic chemical vapor deposition

T. Xiaohong, Z. Baolin and Y. Zongyou, CrystEngComm, 2013, 15, 604 DOI: 10.1039/C2CE26271A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements