Issue 8, 2006

The effects of strong Lewis-base reagents on supramolecular hydrogen bonding of meso-tetra(carboxyphenyl)porphyrins

Abstract

Reactions of Pd-, Ru(CO)- and Cu-complexes of meso-tetra(carboxyphenyl)porphyrin with strong Lewis base reagents (as pyridine, 4-acetylpyridine or dimetylsulfoxide) avoided the formation of commonly observed 2-D or 3-D multiporphyrin arrays by direct hydrogen bonding. Structural analysis of the crystalline products indicates that this is due to preferential affinity of these reagents to associate to the carboxylic acid functions via H-bonds, in competition with the potential self-association of the porphyrin units. In the copper–porphyrin derivative all four carboxylic acid functions of a given porphyrin interact with the 4-acetylpyridine species, creating discrete 1 : 4 porphyrin : ligand pentameric assemblies. Then, in adducts of the ruthenium carbon monoxide porphyrins with pyridine or 4-acetylpyridine, two trans-related carboxylic acid groups of the porphyrin scaffold interact directly with neighboring porphyrin species via the common (COOH)2 cyclic dimeric synthon to yield 1-D hydrogen bonded chains, while the other carboxylic functions donate their protons to molecules of the polar pyridine/acetylpyridine ligand that prevent further interporphyrin lateral binding along the perpendicular direction. The pyridyl-type moieties bear a single electron lone pair on the N-atom that can act as an effective hydrogen bond acceptor, allowing for a localized hydrogen bond with the carboxylic acid. On the other hand, the dimethylsulfoxide can involve readily through its O-site (bearing two lone pairs of electrons) in two hydrogen bonds in tetrahedral directions, and can thus serve as a bridging auxiliary between the carboxylic acid groups of neighboring porphyrins. Correspondingly, its reaction with the palladium complex leads to the formation of heterogeneous porphyrin–dimethylsulfoxide linear hydrogen bonded chains. Along these chains two ligand molecules are inserted between adjacent porphyrin units on both sides, and bridge between their cis-related carboxyphenyl arms. The different motifs of hydrogen-bonding effect different crystal packing features in three dimensions, some characterized also by the presence of solvent-accessible open channels that propagate through the lattice.

Graphical abstract: The effects of strong Lewis-base reagents on supramolecular hydrogen bonding of meso-tetra(carboxyphenyl)porphyrins

Supplementary files

Article information

Article type
Paper
Submitted
22 Jun 2006
Accepted
13 Jul 2006
First published
25 Jul 2006

CrystEngComm, 2006,8, 601-607

The effects of strong Lewis-base reagents on supramolecular hydrogen bonding of meso-tetra(carboxyphenyl)porphyrins

S. Lipstman, S. Muniappan, S. George and I. Goldberg, CrystEngComm, 2006, 8, 601 DOI: 10.1039/B608852J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements