Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Issue 27, 2020
Previous Article Next Article

Hexanuclear [Cp*Dy]6 single-molecule magnet

Author affiliations


A hexanuclear cluster [(Cp*Dy)6K4Cl16(THF)6], [Cp*Dy]6, has been constructed from six {Cp*DyIII} synthons in which the strongly coordinating Cp* caps determine the local anisotropy axes. Structural characterization of [Cp*Dy]6 shows two almost parallel triangular (Cp*Dy)3 fragments that are linked by the K+ and Cl ions. Magnetic measurements reveal slow thermal relaxation and fast quantum tunneling relaxation in the absence of an external dc field. After applying a weak dc field, the quantum tunneling relaxation is efficiently suppressed, giving a sizable energy barrier of 561 K, which represents the current record energy barrier for high nuclearity organometallic SMMs.

Graphical abstract: Hexanuclear [Cp*Dy]6 single-molecule magnet

Back to tab navigation

Supplementary files

Article information

16 Dec 2019
27 Feb 2020
First published
27 Feb 2020

This article is Open Access

Chem. Commun., 2020,56, 3887-3890
Article type

Hexanuclear [Cp*Dy]6 single-molecule magnet

J. Wu, S. Demeshko, S. Dechert and F. Meyer, Chem. Commun., 2020, 56, 3887
DOI: 10.1039/C9CC09774K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Social activity

Search articles by author