Issue 19, 1997

Solid-state chemistry of lithium power sources†

Abstract

This article describes the solid-state chemistry of intercalation compounds that underpins a revolutionary new rechargeable lithium battery which has recently achieved phenomenal commercial success. The battery can store more than twice the energy compared with conventional alternatives of the same size and mass and holds the key to the future improvement of consumer electronic products (e.g. mobile telephones), electric vehicles and implantable medical devices (e.g. the artificial heart). Attention is focused on those lithium intercalation compounds that are useful as positive electrodes in rechargeable lithium batteries. The basic operation of the cell is summarised briefly and the structure/property relationships are developed that are important for the solid-state chemist when attempting to design and synthesise new lithium intercalation compounds capable of operating as positive electrodes. Finally, the structure, electronic structure and intercalation chemistry of several important positive intercalation electrodes are discussed including some which show considerable promise for applications in future generations of rechargeable lithium batteries.

Article information

Article type
Paper

Chem. Commun., 1997, 1817-1824

Solid-state chemistry of lithium power sources†

P. G. Bruce, Chem. Commun., 1997, 1817 DOI: 10.1039/A608551B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements