Jump to main content
Jump to site search

Issue 40, 2018
Previous Article Next Article

An electrochemical immunosensor based on a multiple signal amplification strategy for highly sensitive detection of prostate specific antigen

Author affiliations

Abstract

A sandwich-type electrochemical immunosensor was developed based on a multiple signal amplification strategy. To enable this objective, pompon-like palladium@platinum nanoparticles were attached onto a 3-aminopropyl-triethoxysilane functionalized cuprous oxide@cobalt oxide nanocomposite (Pd@Pt-APTES-Cu2O@Co3O4) by constructing Pt–N bonds. The nanocomposite exhibited better electrocatalytic activity towards the reduction of hydrogen peroxide than each component and was used as a multiple signal amplification label to capture secondary antibodies due to its splendid electrochemical performance. Meanwhile, a gold nanoparticle incorporated chitosan-graphene nanocomposite solution (Au-CS-Gr) was modified on a glassy carbon electrode and employed as an electron transfer facilitator and primary antibody carrier. The proposed electrochemical immunosensor showed a wide linear range from 0.01 pg mL−1 to 100 ng mL−1 and a low detection limit of 2.0 fg mL−1 for quantitative detection of PSA. It also exhibited high sensitivity, good stability and acceptable reproducibility. Furthermore, a favorable result was obtained when the proposed method was applied to the analysis of human serum samples, which indicated its potential application in clinical analysis of tumor markers.

Graphical abstract: An electrochemical immunosensor based on a multiple signal amplification strategy for highly sensitive detection of prostate specific antigen

Back to tab navigation

Supplementary files

Article information


Submitted
11 Jul 2018
Accepted
17 Sep 2018
First published
25 Sep 2018

Anal. Methods, 2018,10, 4917-4925
Article type
Paper

An electrochemical immunosensor based on a multiple signal amplification strategy for highly sensitive detection of prostate specific antigen

L. Liu, G. Zhao, X. Dong, X. Li, Q. Wei and W. Cao, Anal. Methods, 2018, 10, 4917
DOI: 10.1039/C8AY01533C

Social activity

Search articles by author

Spotlight

Advertisements