Issue 12, 2010

Advances in PAHs/nitro-PAHs fractioning

Abstract

The aim of this work was to develop an efficient methodology for the reliable fractioning of nitrated-polycyclic aromatic hydrocarbons (nitro-PAHs) and polycyclic aromatic hydrocarbons (PAHs). Unlike what usually occurs under pressures developed by HPLC (high performance liquid chromatography) systems (above 11 bar) we observed that when normal phase chromatographic fractioning procedures are accomplished under very low pressures (about 1 bar), dipole molecules (nitro-PAHs) elute much faster than non-polar organic molecules (PAHs). This finding allowed developing an original and very efficient methodology for fractioning nitro-PAHs and PAHs. This method is based on normal-phase liquid chromatography through a home-made phenyl column by using hexane as mobile phase at very low speed flow (0.05 ml min−1). Unlike typical HPLC methodology, the fractioning of nitro-PAHs and PAHs was accomplished as a function of their polarity (first the polar compounds as a unique peak and further, the non-polar compounds, PAHs) rather than as a function of their medium polarizability.

Graphical abstract: Advances in PAHs/nitro-PAHs fractioning

Article information

Article type
Paper
Submitted
05 Aug 2010
Accepted
22 Sep 2010
First published
21 Oct 2010

Anal. Methods, 2010,2, 2017-2024

Advances in PAHs/nitro-PAHs fractioning

A. Andrade-Eiroa, V. Leroy and P. Dagaut, Anal. Methods, 2010, 2, 2017 DOI: 10.1039/C0AY00484G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements