Issue 6, 2010

Rapid analysis of polybrominated diphenyl ethers by ion attachment mass spectrometry

Abstract

Novel rapid analytical method was developed for evaluating polymers for the presence of polybrominated diphenyl ethers (PBDEs), which have been prohibited by the RoHS directive, using ion attachment mass spectrometry (IAMS). IAMS requires no chemical pretreatment or separation process for the individual organic compounds before analysis because of its “soft” ionization feature. When measurement was performed for a standard solution of decabromodiphenly ether (decaBDE), no fragment ions were detected. The optimum analysis conditions for polymers were determined using reference materials. When polymers containing decaBDE were analyzed by IAMS under the optimum conditions, a decaBDE concentration of approximately 300 ppm (in the case of 1-mg solid sample for analysis) could be detected with no fragmentation. Even if other brominated compounds, such as ethylene (bis-tetrabromophthal)imide (EBTBPI) and bis(pentabromophenyl)ethane (BPBPE) were present in the sample together with decaBDE, each compound could be identified successfully. In addition, with respect to the validation of IAMS, it was confirmed the limit of detection (LOD) and the limit of quantification (LOQ) for decaBDE were 13.5 and 45.0 ppm (in the case of 1-mg solid sample for analysis), respectively, and that the calibration curve showed good linearity (R2 = 0.9962) within the range of 0.04 to 2.00 μg. The recovery of the decaBDE from the certified reference materials was 81.4% for the 317-ppm sample and 85.4% for 886-ppm sample.

Graphical abstract: Rapid analysis of polybrominated diphenyl ethers by ion attachment mass spectrometry

Article information

Article type
Paper
Submitted
07 Sep 2009
Accepted
22 Feb 2010
First published
18 Mar 2010

Anal. Methods, 2010,2, 701-706

Rapid analysis of polybrominated diphenyl ethers by ion attachment mass spectrometry

Y. Sato, M. Oki, A. Kondo, M. Takenaka and H. Satake, Anal. Methods, 2010, 2, 701 DOI: 10.1039/B9AY00161A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements