Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 24, 2018
Previous Article Next Article

Dual excitation wavelength system for combined fingerprint and high wavenumber Raman spectroscopy

Author affiliations

Abstract

A fiber optic probe-based Raman spectroscopy system using a single laser module with two excitation wavelengths, at 680 and 785 nm, has been developed for measuring the fingerprint and high wavenumber regions using a single detector. This system is simpler and less expensive than previously reported configurations of combined fingerprint and high wavenumber Raman systems, and its probe-based implementation facilitates numerous in vivo applications. The high wavenumber region of the Raman spectrum ranges from 2800–3800 cm−1 and contains valuable information corresponding to the molecular vibrations of proteins, lipids, and water, which is complimentary to the biochemical signatures found in the fingerprint region (800–1800 cm−1), which probes DNA, lipids, and proteins. The efficacy of the system is demonstrated by tracking changes in water content in tissue-mimicking phantoms, where Voigtian decomposition of the high wavenumber water peak revealed a correlation between the water content and type of water-tissue interactions in the samples. This dual wavelength system was then used for in vivo assessment of cervical remodeling during mouse pregnancy, a physiologic process with known changes in tissue hydration. The system shows that Raman spectroscopy is sensitive to changes in collagen content in the fingerprint region and hydration state in the high wavenumber region, which was verified using an ex vivo comparison of wet and dry weight. Simultaneous fingerprint and high wavenumber Raman spectroscopy will allow precise in vivo quantification of tissue water content in the high wavenumber region, paired with the high biochemical specificity of the fingerprint region.

Graphical abstract: Dual excitation wavelength system for combined fingerprint and high wavenumber Raman spectroscopy

Back to tab navigation

Supplementary files

Article information


Submitted
15 Oct 2018
Accepted
27 Oct 2018
First published
31 Oct 2018

Analyst, 2018,143, 6049-6060
Article type
Paper

Dual excitation wavelength system for combined fingerprint and high wavenumber Raman spectroscopy

L. E. Masson, C. M. O'Brien, I. J. Pence, J. L. Herington, J. Reese, T. G. van Leeuwen and A. Mahadevan-Jansen, Analyst, 2018, 143, 6049
DOI: 10.1039/C8AN01989D

Social activity

Search articles by author

Spotlight

Advertisements