Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 17, 2016
Previous Article Next Article

SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size

Author affiliations

Abstract

The radius of curvature of gold (Au) nanostar tips but not the overall particle dimensions can be used for understanding the large and quantitative surface-enhanced Raman scattering (SERS) signal of the uranyl (UO2)2+ moiety. The engineered roughness of the Au nanostar architecture and the distance between the gold surface and uranyl cations are promoted using carboxylic acid terminated alkanethiols containing 2, 5, and 10 methylene groups. By systematically varying the self-assembled monolayer (SAM) thickness with these molecules, the localized surface plasmon resonance (LSPR) spectral properties are used to quantify the SAM layer thickness and to promote uranyl coordination to the Au nanostars in neutral aqueous solutions. Successful uranyl detection is demonstrated for all three functionalized Au nanostar samples as indicated by enhanced signals and red-shifts in the symmetric U(VI)–O stretch. Quantitative uranyl detection is achieved by evaluating the integrated area of these bands in the uranyl fingerprint window. By varying the concentration of uranyl, similar free energies of adsorption are observed for the three carboxylic acid terminated functionalized Au nanostar samples indicating similar coordination to uranyl, but the SERS signals scale inversely with the alkanethiol layer thickness. This distance dependence follows previously established models assuming that roughness features associated with the radius of curvature of the tips are considered. These results indicate that SERS signals using functionalized Au nanostar substrates can provide quantitative detection of small molecules and that the tip architecture plays an important role in understanding the resulting SERS intensities.

Graphical abstract: SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size

Back to tab navigation

Publication details

The article was received on 16 Apr 2016, accepted on 08 Jun 2016 and first published on 08 Jun 2016


Article type: Paper
DOI: 10.1039/C6AN00891G
Citation: Analyst, 2016,141, 5137-5143

  •   Request permissions

    SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size

    G. Lu, T. Z. Forbes and A. J. Haes, Analyst, 2016, 141, 5137
    DOI: 10.1039/C6AN00891G

Search articles by author

Spotlight

Advertisements