Issue 15, 2016

Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices

Abstract

This paper describes the modification of microfluidic paper-based analytical devices (μPADs) with chitosan to improve the analytical performance of colorimetric measurements associated with enzymatic bioassays. Chitosan is a natural biopolymer extensively used to modify biosensing surfaces due to its capability of providing a suitable microenvironment for the direct electron transfer between an enzyme and a reactive surface. This hypothesis was investigated using glucose and uric acid (UA) colorimetric assays as model systems. The best colorimetric sensitivity for glucose and UA was achieved using a chromogenic solution composed of 4-aminoantipyrine and sodium 3,5-dichloro-2-hydroxy-benzenesulfonate (4-AAP/DHBS), which provided a linear response for a concentration range between 0.1 and 1.0 mM. Glucose and UA were successfully determined in artificial serum samples with accuracies between 87 and 114%. The limits of detection (LODs) found for glucose and UA assays were 23 and 37 μM, respectively. The enhanced analytical performance of chitosan-modified μPADs allowed the colorimetric detection of glucose in tear samples from four nondiabetic patients. The achieved concentration levels ranged from 130 to 380 μM. The modified μPADs offered analytical reliability and accuracy as well as no statistical difference from the values achieved through a reference method. Based on the presented results, the proposed μPAD can be a powerful alternative tool for non-invasive glucose analysis.

Graphical abstract: Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices

Supplementary files

Article information

Article type
Paper
Submitted
22 Feb 2016
Accepted
24 May 2016
First published
27 May 2016

Analyst, 2016,141, 4749-4756

Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices

E. F. M. Gabriel, P. T. Garcia, T. M. G. Cardoso, F. M. Lopes, F. T. Martins and W. K. T. Coltro, Analyst, 2016, 141, 4749 DOI: 10.1039/C6AN00430J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements