Issue 17, 2013

Glucose level determination with a multi-enzymatic cascade reaction in a functionalized glass chip

Abstract

In this work we show the functionalization of the interior of microfluidic glass chips with poly(2-hydroxyethyl methacrylate) polymer brushes as anchors for co-immobilization of the enzymes glucose-oxidase and horseradish peroxidase. The formation of the brush layer and subsequent immobilization of these enzymes have been characterized on flat surfaces by atomic force microscopy and Fourier transform infrared spectroscopy, and studied inside glass chips by field emission scanning microscopy. Enzyme-functionalized glass chips have been applied for performing a multi-enzymatic cascade reaction for the fast (20 s) determination of glucose in human blood samples and the result is in excellent agreement with values obtained from the conventional hospital laboratory. The limit of detection of this bi-enzymatic method is 60 μM. With the advantages of high selectivity and reproducibility, this functionalization method can be used for improving the efficiency of glucose sensors.

Graphical abstract: Glucose level determination with a multi-enzymatic cascade reaction in a functionalized glass chip

Supplementary files

Article information

Article type
Paper
Submitted
22 Apr 2013
Accepted
19 Jun 2013
First published
20 Jun 2013

Analyst, 2013,138, 5019-5024

Glucose level determination with a multi-enzymatic cascade reaction in a functionalized glass chip

F. Costantini, R. Tiggelaar, S. Sennato, F. Mura, S. Schlautmann, F. Bordi, H. Gardeniers and C. Manetti, Analyst, 2013, 138, 5019 DOI: 10.1039/C3AN00806A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements