Issue 17, 2011

Biosprayed spleen cells integrate and function in mouse models

Abstract

Bio-electrospraying (BES) and aerodynamically assisted bio-jetting (AABJ), two non-contact direct cell handling approaches, have recently undergone rigorous scientific testing to assess whether cells retain chemical, physical and more importantly biological functions similarly to their unmanipulated counterparts. Previous in vitro validation of these two approaches has shown that they are inert for the direct handling and distributing of cells with great accuracy. In the present investigation we aim to validate, in vivo, that the spray techniques do not functionally or phenotypically alter splenic cells. By taking advantage of an adoptive transfer mouse model we demonstrated that the in vivo behaviour of treated cells is indistinguishable from unmanipulated cells following adoptive transfer into C57/BL6 mice. Indeed, sprayed cells survived and proliferated in response to antigen activation to similar levels observed in unmanipulated cells. In addition, in vivo sprayed cells displayed identical migratory characteristics to those observed in unmanipulated cells. Thus, demonstrating the inertness of these biosprays. Hence these biotechniques hold great potential for use in the development of three-dimensional cultures, tracking and monitoring cell-interactions and in vitro modelling of disease-states and therapeutics.

Graphical abstract: Biosprayed spleen cells integrate and function in mouse models

Article information

Article type
Communication
Submitted
22 Feb 2011
Accepted
23 Mar 2011
First published
31 Mar 2011

Analyst, 2011,136, 3434-3437

Biosprayed spleen cells integrate and function in mouse models

N. A. Carter, S. N. Jayasinghe and C. Mauri, Analyst, 2011, 136, 3434 DOI: 10.1039/C1AN15154A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements