Issue 2, 2010

Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples

Abstract

Infrared spectra of single biological cells often exhibit the ‘dispersion artefact’ observed as a sharp decrease in intensity on the high wavenumber side of absorption bands, in particular the Amide I band at ∼1655 cm−1, causing a downward shift of the true peak position. The presence of this effect makes any biochemical interpretation of the spectra unreliable. Recent theory has shed light on the origins of the ‘dispersion artefact’ which has been attributed to resonant Mie scattering (RMieS). In this paper a preliminary algorithm for correcting RMieS is presented and evaluated using simulated data. Results show that the ‘dispersion artefact’ appears to be removed; however, the correction is not perfect. An iterative approach was subsequently implemented whereby the reference spectrum is improved after each iteration, resulting in a more accurate correction. Consequently the corrected spectra become increasingly more representative of the pure absorbance spectra. Using this correction method reliable peak positions can be obtained.

Graphical abstract: Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples

Article information

Article type
Paper
Submitted
07 Oct 2009
Accepted
30 Nov 2009
First published
15 Dec 2009

Analyst, 2010,135, 268-277

Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples

P. Bassan, A. Kohler, H. Martens, J. Lee, H. J. Byrne, P. Dumas, E. Gazi, M. Brown, N. Clarke and P. Gardner, Analyst, 2010, 135, 268 DOI: 10.1039/B921056C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements