Issue 7, 2009

Dithizone nanofiber-coated membrane for filtration-enrichment and colorimetric detection of trace Hg(ii) ion

Abstract

Dithizone nanofiber-coated membranes (dithizone membranes), which are useful for sensitive and selective determination of Hg(II), were fabricated. Simply by filtration of the aqueous dispersion of dithizone nanofiber through a cellulose ester membrane filter, a dithizone nanofiber layer of less than 500 nm thickness was coated firmly and uniformly over the membrane filter surface. The steel blue color of the membrane remained unchanged for more than three months when fabricated in the presence of ascorbic acid and stored with an oxygen absorber in an evacuated aluminium bag. Determination at the parts per billion level of Hg(II) was achieved by filtration-enrichment of a sample solution and simultaneous colorimetric analysis using a TLC scanner (500 nm). Consequently, Hg(II) ion was concentrated in the dithizone layer as reddish brown complexes by filtration of a sample solution at pH 2.7. More than 90% of 10 ppb Hg(II) was retained in the dithizone layer at the filtration rate of 1.3–9.3 ml min−1. The presence of Na+ (10 000 ppm), K+ (5000 ppm), Ca(II) (5000 ppm), Cu(II) (6.4 ppm), Fe(II) (100 ppm), Zn(II) (100 ppm), Pb(II) (100 ppm) and Cd(II) (10 ppm) by using 2.5 × 10−4 M of ethylenediamine tetraacetic acid (EDTA) as a masking reagent did not interfere with the detection of Hg(II) (10 ppb). Most of anions did not interfere with the determination of Hg(II). The present method was tested for the detection of simulated wastewater, river water and seawater spiked with 10 ppb of Hg(II).

Graphical abstract: Dithizone nanofiber-coated membrane for filtration-enrichment and colorimetric detection of trace Hg(ii) ion

Supplementary files

Article information

Article type
Paper
Submitted
19 Sep 2008
Accepted
14 Apr 2009
First published
23 Apr 2009

Analyst, 2009,134, 1380-1385

Dithizone nanofiber-coated membrane for filtration-enrichment and colorimetric detection of trace Hg(II) ion

Y. Takahashi, S. Danwittayakul and T. M. Suzuki, Analyst, 2009, 134, 1380 DOI: 10.1039/B816461D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements