Issue 10, 2008

Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device

Abstract

This paper presents a new biomechanical analysis method for discrimination between cancerous and normal cells through compression by poly(dimethylsiloxane) (PDMS) membrane deflection in a microfluidic device. When a cell is compressed, cellular membrane will expand and then small bulges will appear on the peripheral cell membrane beyond the allowable strain. It is well known that the amount of F-actin in cancer cells is less than that of normal cells and bulges occur at the sites where cytoskeleton becomes detached from the membrane bilayer. Accordingly, we have demonstrated the difference of the bulge generation between breast cancer cells (MCF7) and normal cells (MCF10A). After excessive deformation, the bulges generated in MCF7 cells were not evenly distributed on the cell periphery. Contrary to this, the bulges of MCF10A cells showed an even distribution. In addition, the morphologies of bulges of MCF7 and MCF10A cells looked swollen protrusion and tubular protrusion, respectively. Peripheral strains at the moment of the bulge generation were also 72% in MCF7 and 46% in MCF10A. The results show that the bulge generation can be correlated with the cytoskeleton quantity inside the cell, providing the first step of a new biomechanical approach.

Graphical abstract: Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device

Article information

Article type
Paper
Submitted
31 Mar 2008
Accepted
24 Jun 2008
First published
30 Jul 2008

Analyst, 2008,133, 1432-1439

Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device

Y. C. Kim, S. Park and J. Park, Analyst, 2008, 133, 1432 DOI: 10.1039/B805355C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements