Issue 8, 2001

Spectroscopic analysis of the tribological behavior of a model boundary layer lubricant

Abstract

Highly ordered alkanethiol self-assembled monolayers (SAMs) on gold substrates are suitable models of boundary layer lubricants and may be used in actual nanoscale device applications. Here, such monolayers were studied by spectroscopic methods as a function of tribological wear (rubbing) using a pin-on-disk microtribometer. The coefficient of friction (COF) (ratio of the frictional force to the load) was measured with the tribometer, and reflectance infrared spectra and X-ray photoelectron spectra were obtained as the monolayer film failed and the COF changed. The results show that it is possible to correlate disorder in the monolayer film with tribological failure of the film, and that continued rubbing produces a chemical change in the monolayer film. Disorder in the monolayer is distinct from the influence of wear in the underlying gold substrate. Aged SAMs, having sulfonate rather than thiol headgroups and initially less well ordered, behave differently to the well-ordered freshly prepared SAMs. Interestingly, they show a lower COF over many more cycles of exposure to the rubbing pin. The impact of the mechanism of film failure in boundary layer lubrication is discussed.

Article information

Article type
Paper
Submitted
15 Feb 2001
Accepted
30 Mar 2001
First published
21 May 2001

Analyst, 2001,126, 1269-1273

Spectroscopic analysis of the tribological behavior of a model boundary layer lubricant

A. Nichols Jr. and S. C. Street, Analyst, 2001, 126, 1269 DOI: 10.1039/B101490K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements