Jump to main content
Jump to site search

Issue 7, 1998
Previous Article Next Article

Fluorimetric optode membrane for sulfide detection

Abstract

Sulfide-selective optode membranes have been fabricated by immobilizing tetraoctylammonium fluorescein mercuric acetate (TOAFMA), tetraoctylammonium hydroxide and tri-n-butyl phosphate into ethyl cellulose. These membranes were coated on overhead transparency films as solid supports and employed as sensing devices for fluorimetric determination of sulfide ions in pH buffered solutions. The sensing scheme is based on a ground state chemical reaction of TOAFMA and hydrosulfide leading to the formation of a non-fluorescent fluorescein mercuric sulfide, which can be related to the concentration of the sulfide ions present in solution. The response behaviour of the membrane is slightly pH dependent at pH values higher than 10.0. At pH 12.5, the useful detection range is 0.07 to 4.4 µmol dm–3 of sulfide ions since this range has better response to Na2S. The detection limit is calculated to be 0.07 µmol dm–3. The concentrations of sulfide ions in spiked water samples determined by the sulfide-selective optode membranes at pH 12.5 were found to reasonably agree with the added concentrations. The optode membrane has a fast response time of less than 1 min. The fluorescence signal of the optode membrane can easily be recovered by rinsing with a solution of 0.42 mmol dm–3 of sodium hypochlorite and 0.10 mmol dm–3 of sodium acetate. Anions including bromide, nitrate, perchlorate and dichromate interfere seriously with the detection but other anions such as sulfite, oxalate, thiosulfate, iodide, sulfate, nitrite, acetate, fluoride, chloride and carbonate either do not interfere or interfere slightly.

Back to tab navigation

Article information


Analyst, 1998,123, 1631-1634
Article type
Paper

Fluorimetric optode membrane for sulfide detection

M. M. F. Choi, Analyst, 1998, 123, 1631
DOI: 10.1039/A801702F

Social activity

Search articles by author

Spotlight

Advertisements