Issue 8, 2026, Issue in Progress

Strain effect on photocatalytic oxygen evolution activity in Sr3NF3 mixed anion perovskite using first-principles density functional theory (DFT)

Abstract

This work presents a first-principles investigation of the mixed-anion perovskite Sr3NF3, evaluating its photocatalytic potential under biaxial strain. Stability analysis confirms its structural, dynamic and mechanical robustness. Sr3NF3 exhibits a direct bandgap of 2.06 eV (HSE06), tunable from 1.77 eV under +6% tensile strain to 2.16 eV under −6% compressive strain. Electron density difference plots reveal strong internal charge separation attributed to the mixed-anion framework. Optical results show that Sr3NF3 exhibits high absorption in both visible and UV regions, with compressive strain enhancing absorption (∼1.35 × 105 cm−1) and the static dielectric constant (ε = 4.11), improving carrier separation. While unsuitable for hydrogen evolution, Sr3NF3 shows strong intrinsic oxidation driving force for oxygen evolution, exhibiting an overpotential of 1.51 eV at −6% strain. Low carrier effective masses further suggest fast charge transport. These findings identify Sr3NF3 as a promising, strain-tunable mixed-anion perovskite with favorable intrinsic electronic properties for oxygen evolution, and suitable as an OER-oriented component in advanced photocatalytic architectures.

Graphical abstract: Strain effect on photocatalytic oxygen evolution activity in Sr3NF3 mixed anion perovskite using first-principles density functional theory (DFT)

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
10 Nov 2025
Accepted
27 Jan 2026
First published
04 Feb 2026
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2026,16, 6900-6914

Strain effect on photocatalytic oxygen evolution activity in Sr3NF3 mixed anion perovskite using first-principles density functional theory (DFT)

P. Utsho, M. Ibrahim, Md. S. H. Khan and Md. R. Islam, RSC Adv., 2026, 16, 6900 DOI: 10.1039/D5RA08652C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements